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Abstract 

The primary objective was to predict the relative storage capacity of carbonate rocks relevant for 

carbon dioxide sequestration. To achieve this, a detailed pore scale characterization of model 

carbonate rocks, Indiana Limestone and Pink Dolomite, was conducted utilizing micro-computed 

tomography (microCT) data using pore network modeling and invasion percolation simulations.  

For the first time in literature, Pink Dolomite’s pore space characteristics were analyzed. A 

secondary objective was to compare thresholding techniques as applied to carbonates which 

exhibit dual porosity (porosity at multiple length scales). The analysis showed the sensitivity of 

existing methods to the thresholding technique, imaging method and material. Overall, the 

contributions of this work provide an assessment of two carbonates relevant for carbon capture 

and storage at the pore scale; and a preliminary assessment into thresholding dual porosity 

carbonates. 
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Chapter 1  

Introduction 

1.1 Background  

Carbon dioxide sequestration, also known as carbon capture and storage is recognized by 

the Intergovernmental Panel on Climate Change as a promising method to lower carbon 

dioxide emissions from concentrated sources, such as coal power plants, or oil refineries 

[1]. A major subset of carbon capture and storage methods involves the injection of 

carbon dioxide into deep geologic media (greater than 800 m below surface [2]). In order 

to safely, and securely store the carbon dioxide for generations to come, microscale 

studies on the transport of carbon dioxide through porous media are required. In 

particular, developing accurate numerical models to predict the saturation profiles of 

dissolved carbon dioxide, and its migration through the geosphere requires detailed 

characterization of the rock structure below the centimeter scale. Describing the migration 

patterns and improvements to the predictability of the flow regime requires a pore scale 

characterization of the rock structures where the carbon dioxide is injected.  

Micro-computed tomography (microCT) is a powerful tool for characterizing, in three 

dimensions, the internal structure of rock core samples through non-destructive 

examination.  The collected data is used to extract a pore network model, which is a 

geometrical representation of the pore space as a series of pores connected by throats [3]. 

The pore network model provides the fundamental pore scale structure of the rocks, in 

terms of the pore size distribution, throat radius distribution, pore coordination number 

(representing the connectivity of the pores to one another), and the pore-to-pore distance. 

The invasion of a fluid through the material can then be simulated through invasion 

percolation simulations to determine the rock’s permeability (ability to permit flow). This 

information is crucial to the development of realistic characterizations of the pore 

geometry and saturation profiles that lead to improved system scale simulations.  

MicroCT and the extracted pore network models have been used extensively for 

petroleum [4, 5] and geologic [6, 7] studies to characterize the pore geometry, 

permeability and porosity of sandstone [4, 8-10] and oil-bearing carbonates [11-15] to 
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determine the potential productivity of oil reservoirs and to enhanced oil recovery [16]. 

However, microCT and pore network models have seen limited application to carbonates 

for use in carbon sequestration studies. 

There are two primary carbonate formations in North America where carbon dioxide is 

injected to enhance oil recovery, specifically in the Weyburn Fields in Saskatchewan, 

Canada, and in the Permian Basin in Texas, USA [16, 17].  Bachu [18] identified the 

Alberta Basin as an ideal location for carbon dioxide sequestration due to the geologic 

suitability, high porosity formations with low permeability caprock, as well as the 

proximity to large carbon dioxide emitters. However, despite this preliminary study of the 

Alberta Basin much work remains to fully analyze the detailed microstructure and 

multiphase transport parameters of suitable carbonate reservoirs [17]. Their 

heterogeneous porosity (defined as dual porosity) and permeability distributions [17] add 

a complexity not found in sandstone formations, requiring further in depth investigation. 

Indiana Limestone and Pink Dolomite reasonably represent the porosity and permeability 

conditions identified for sequestration in the Alberta basin [10] and can be taken as 

representative model carbonates. 

For dual porosity rocks, such as carbonates, it is challenging to capture the full range of 

the pore structure with a single imaging technique due to pore sizes over a broad range 

(nanometres to centimetres) [19-21]. Deriving relationships between the porosity and 

flow-based properties for carbonate reservoirs remains an area of active research, due 

mainly to the complexity of carbonate structures because of their dual porosity [21-31]. 

Some researchers [32, 33] have used image registration techniques [29] (which involves 

the use of multiple images at various resolutions) to combine high resolution data from 

scanning electron microscopy (SEM) with lower resolution microCT data. Image 

registration techniques, however, are dependent on computationally intensive algorithms 

[29] to combine the porosity data at disparate length scales. To overcome this challenge, 

most recently, Ji et al. [20] proposed a methodology to determine the microporosity 

directly from microCT data of Indiana Limestone. However, it has seen limited 

application to other carbonates. To determine the porosity of rocks from microCT or SEM 

data, the greyscale images need to be converted to binary images (representing rock space 

and pore space) through a process called thresholding. The literature lacks a systematic 
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thresholding technique applicable broadly to microCT and SEM data of carbonates.  

1.2 Motivation  

The immediate motivation for this thesis is the pressing need for an accurate numerical 

model that characterizes carbonate rocks relevant for carbon capture and storage at the 

microscale with a realistic and valid description of the rock structure as a pore network. 

To accomplish this requirement, model carbonate rock samples need to be analyzed in 

detail for their physical porous characteristics. The characteristics can then provide a 

generic description of the rock’s pore space as input into the numerical modeling of the 

geological rock formation under study. 

This work also derives from its relevance to the broader objectives of the research being 

conducted at the University of Toronto, University of British Columbia, University of 

Alberta and the University of Calgary for Carbon Management Canada, under ‘Project 

B04: A pore scale microlab to perform fundamental laboratory-based studies of carbon 

dioxide transport and reactivity in reservoirs.’ Researchers in this project are working on 

developing innovative numerical methods and experimental setups to emulate core 

conditions in geologic carbon dioxide sequestration. The data collected from this research 

will help facilitate the modeling of the rock structure from the microscale level to the 

reservoir scale.  

1.3 Objectives 

The overall objective of this thesis is to predict the relative storage capacity of carbonate 

rock formations by characterizing the porous structure of two model carbonate rocks 

relevant for carbon dioxide sequestration; Indiana Limestone and Pink Dolomite through 

pore network modeling and invasion percolation simulations.  A secondary objective is to 

provide a comparison of thresholding techniques of SEM and microCT data as applied to 

Indiana Limestone and Pink Dolomite in order to determine the sensitivity of thresholding 

techniques to the imaging technique, spatial resolution, and material. 

1.4 Contributions 

The thesis has led to the following contributions: 
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Pore Structure Characterization 

 Statistical distributions of pore scale parameters describing the internal pore 

geometry were determined for two model carbonate rocks, Indiana Limestone and 

Pink Dolomite, which are representative of suitable geological formations for 

carbon dioxide storage. These statistical distributions are necessary as structural 

input parameters for pore scale and reservoir scale simulations of carbon dioxide 

injection into brine-filled porous rock structures to determine the carbon dioxide 

storage capacities of these formations. The key characteristics of the pore space 

that were determined include: mean pore volume, mean pore radius, mean throat 

radius, mean coordination number, and mean pore-to-pore distance. 

 The log-normal distributions of the pore space parameters were found using a pore 

space extraction scheme based on the Watershed algorithm. The distributions for 

Indiana Limestone match well with the literature with as small as a 9 % 

difference. This work presents the first pore scale description of Pink Dolomite, as 

there is little discussion in literature on this carbonate.  

 From pore space extractions based on microCT imaging and a novel Watershed 

algorithm, Pink Dolomite’s and Indiana Limestone’s pore structure and saturation 

profiles were determined for use in future upscaling studies to ultimately support 

reservoir scale modeling.  

Mineral Characterization 

 The bulk mineral composition of Indiana Limestone and Pink Dolomite were 

determined using X-ray fluorescence as 98.6 % and 99.4 % calcite (CaCO3) by 

atomic weight percent, respectively.  

Dual Porosity of Carbonates 

 High-resolution (0.9-1.5 μm/pixel) SEM images were compared to the lower 

resolution three-dimensional microCT image data to determine the sensitivity of 

thresholding methods to the imaging technique, spatial resolution and material.  
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 For Indiana Limestone, the porosity determined using single Otsu, Ji et al.’s [20] 

dual Otsu and the high resolution SEM image was (13±1) %, (14±4) % and 

(23±4) %, respectively. For Pink Dolomite, the porosity determined using single 

Otsu, Ji et al.’s [20] dual Otsu and the high resolution SEM image was (30±2) %, 

(27±2) % and (34±3) %, respectively. 

1.5 Organization of the Thesis 

This thesis is organized into five chapters. In this first chapter, a general introduction, 

motivation, objectives and contributions are provided. Chapter 2 provided a literature 

review on carbon capture and storage methods and discussed the experimental and 

numerical approaches for characterizing the rock structures found in the literature. In 

Chapter 3, the pore structure characterization studies, both experimental and numerical, 

which were conducted on four Indiana Limestone and four Pink Dolomite rock samples 

are presented and discussed. In Chapter 4, the assessment of thresholding techniques to 

characterize the dual porosity of the Indiana Limestone and Pink Dolomite samples are 

provided. In Chapter 5, the conclusions and the recommendations for future work are 

detailed. 
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Chapter 2  

Background and Literature Review 

2  
2.1 Introduction 

In this chapter carbon sequestration in deep geologic formations (greater than 800 m 

below surface [2]) is introduced and a description of the transport of carbon dioxide 

through porous media is presented. Previous studies on the transport of carbon dioxide 

through rock media, both experimental and numerical, are discussed. An overview of pore 

network modeling and previous studies with modeling of rock structures is reviewed.  

2.2 Carbon Dioxide Sequestration in Geologic Media 

Carbon dioxide sequestration in geologic media, also known as carbon capture and 

storage is recognized by the Intergovernmental Panel on Climate Change as a promising 

method to reduce carbon dioxide emissions from the combustion of coal, and natural gas 

[1]. Carbon capture and storage has received much attention for its potential for 

mitigating carbon dioxide emissions from large industrial emitters, such as power plants, 

which use coal, oil, natural gas, and industrial facilities producing hydrogen, and 

ammonia, pulp and paper plants, cement production and petrochemical refineries.  

A carbon capture and storage system has three main components, the capture of the 

carbon dioxide from the facility, the transportation of the carbon dioxide to the injection 

site, and its storage in a suitable geologic formation. Although the technology exists to 

perform each of these three main components, there remain challenges in transitioning 

carbon capture and storage to wide-spread use. The injection of carbon dioxide is in 

commercial use for enhanced oil recovery, yet remains an area of active research [19, 34-

36]. Methods for storing the carbon dioxide include mineralization in mine effluents, 

storage in the oceanic crust, and underground storage.  
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Currently, there are numerous sites with demonstration projects for carbon dioxide 

storage in deep geologic formations. Some of the major demonstration projects are 

Sleipner in Norway, Weyburn in Saskatchewan, In Salah in Algeria, and Snøhvit in 

Norway, (see 

Table 2-1) [37]. These projects provide valuable field data and demonstrate the feasibility 

of carbon capture and storage methods. However, further investigations are required to 

predict the migration of the injected carbon dioxide plume, and overall capacity of storage 

sites. Despite the promise of carbon capture and storage, long-term safety of the injected 

carbon dioxide, costs, and ensuring stored carbon dioxide remains subsurface are 

challenges that need to be overcome to enable wide-scale implementation of the 

technology. In particular, characterizing the geologic structures into which the carbon 

dioxide is injected remains an important challenge in accurately modeling the movement 

of carbon dioxide in over thousands of years.  

2.3 Carbon Dioxide Sequestration in Saline Aquifers 

One promising class of geological formations suitable for long-term carbon dioxide 

storage is deep underground saline aquifers. Their relative global abundance [38, 39], 

proximity to large greenhouse gas emitters [38, 39], and distance from drinking water 

basins [40] make them a suitable location for carbon dioxide storage. Depending on the 

specific geologic formation, saline aquifers can be found at depths between 800 m and 

5000 m below the surface [1]. The injection of carbon dioxide occurs at pressures above 

7.83 MPa [41]. Close to the injection well, the forces dominating the flow are viscous 

while beyond the injection well, the forces dominating the transport are capillary. In this 

regimen, Darcy’s flow is applicable. 

Recently, deep saline limestone aquifers have been identified as suitable storage 

reservoirs for carbon dioxide sequestration in the Sunniland Trend within the Sunniland 

Formation in Florida, owing to their high porosity and adequate hydrocarbon stratigraphic 

trapping [16, 42]. There remain challenges in estimating the long-term safety of the 

injected carbon within the porous rocks. Primarily, assurances are required that the carbon 

dioxide will remain trapped and will not migrate to the surface or contaminate 

groundwater [18, 43, 44]. Reservoir scale analyses are conducted to estimate the 
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migration of the carbon dioxide plume within the geological formation [45]. These 

reservoir scale estimations of carbon dioxide transport require a detailed knowledge of its 

behavior at the pore scale, which in turn depends on the porous structure of the target 

geological formation [46, 47]. To determine the suitability of a specific geologic 

formation, microscale studies are required to identify the detailed rock structure, to 

understand how carbon dioxide will flood the rock and interact with in situ brine, and to 

determine the eventual mineralization of the trapped carbon [48].  

The first rocks considered for carbon dioxide sequestration by both industry and 

researchers were sandstone formations. This is because sandstone reservoirs hold a large 

portion of global petroleum [49] and have been the location for enhanced oil recovery 

projects and carbon dioxide sequestration pilot projects [50]. As a result, significant 

information exists on their pore scale characterization and the microscale behavior of 

injected carbon dioxide within sandstone reservoirs [11, 12, 36, 49-52]. However, interest 

in sequestration in carbonate rocks is quite recent and detailed characterization is 

required.  

To date, there are two primary carbonate formations in North America in which enhanced 

oil recovery is conducted using carbon dioxide injection, specifically in the Weyburn 

Fields in Saskatchewan, Canada, and in the Permian Basin in Texas, USA [16, 17].  

Bachu [18] identified the Alberta Basin as an ideal location for carbon dioxide 

sequestration due to the geologic suitability, high porosity formations with low 

permeability caprock, as well as the proximity to large carbon dioxide emitters, including 

power plants and cement producers. However, despite this preliminary study of the 

Alberta Basin much work remains to fully analyze the detailed microstructure and 

multiphase transport parameters of suitable carbonate reservoirs [17]. Their 

heterogeneous porosity and permeability distributions [17] add a complexity not found in 

sandstone formations, requiring further in depth investigation. Indiana Limestone and 

Pink Dolomite reasonably represent the porosity and permeability conditions identified 

for sequestration in the Alberta basin [10] and can be taken as representative model 

carbonates. The microstructures of Pink Dolomite and Indiana Limestone require detailed 

characterization, in order to accurately model the complex geochemical processes that 

occur during carbon sequestration [20, 53, 54]. Although the bulk properties of Dolomite 
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[55] and Indiana Limestone [56] are known, it is necessary to examine samples of these 

rocks in detail, in order to develop a robust database that can confidently describe the 

rock microstructure as an input to numerical simulations of the geologic system. 

2.4 Experimental Techniques to Determine Porous Microstructure of Rocks 

Knowledge of the pore structure is necessary for determining the carbon dioxide storage 

capacity of a geologic formation. To characterize the microstructure of rocks, a number of 

experimental and numerical techniques have been applied in the literature. These include 

thin-section analysis [57], scanning electron microscopy (SEM) [57, 58], focused ion 

beam microscopy-SEM [59], and mercury intrusion porosimetry  [12, 21, 60, 61]. These 

techniques are destructive, so downstream measurements are not possible, and results for 

multiple techniques must be averaged across multiple samples. 

Micro-computed tomography (microCT) is a non-destructive technique for assessing the 

three-dimensional internal geometry of porous structures [62, 63]. The primary advantage 

is the ability of the technique to image at the micron scale volumes of material including 

bones and rocks. The sample is rotated through 360
o
 and exposed to an X-ray beam at 

minute increments. The projections of the X-ray beam passing through the sample are 

assembled into a three-dimensional greyscale representation. The greyscale values of the 

three-dimensional image are correlated to the linear attenuation of the X-ray beam 

through the sample. The sample’s varying density and the atomic number of the materials 

in the sample attenuate the incoming beam. Since the sample must be fully exposed to the 

beam, there is a physical limit to the sample size, which is inversely proportional to the 

image resolution. The two-dimensional images captured at successive angular rotations 

are combined using image processing software to reveal the internal structure of the 

material after the greyscale images are converted to binary images.  

MicroCT has been used extensively for petroleum [4, 5] and geologic [6, 7] studies to 

structurally characterize sandstone [4, 8-10] and oil-bearing carbonates [11, 12] to 

determine the potential productivity of oil reservoirs and enhanced oil recovery [16]. To 

analyze the pore space of a porous material, the three-dimensional grayscale data from 

microCT needs to be converted to a numerical representation, called a pore network 

model. A pore network model consists of pores that represent the sample voids and 
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throats connecting the pores [3]. The process of determining the pore network model is 

called extraction, and first involves the division of the grayscale data into a binary image 

data set followed by geometrical interpretation of the binary data into pores and throats. 

Subsequently, the permeability and pore structure geometry can be measured [13-15]. 

However, this technique has seen limited application to carbonates for use in carbon 

sequestration studies. Carbonates are particularly challenging to characterize due to the 

processes which occur after the rocks have formed, such as mineral dissolution and 

precipitation, which result in large pores (in the range of millimetres in diameter), and 

channels of varying connectivity [64].  

The experimental techniques described above, have been used extensively in the 

literature. Hollis et al. [60] analysed a database of over 100 thin sections from core plugs 

of the North Oman oilfield, located in the Sultanate of Oman, which is a carbonate 

reservoir formation, and combined the thin-section analysis with mercury intrusion 

porosimetry analysis of a database of over 2600 core plugs to ground the typing of rocks 

in both petrographic analyses and the microscale pore geometry. Although this study 

provided detailed petrographic analysis, and a thorough assessment of the oilfield, it did 

not provide an analysis of the three-dimensional microstructure information. Jiang et al. 

[15] used extracted three-dimensional images of sandstones to validate an innovative 

extraction algorithm. This study found the permeability values of the extracted network 

differed significantly from those calculated using the Lattice-Boltzmann methodology, 

indicating further refinements were required.  

Machado et al. [65] used microCT to validate its ability to measure porosity effectively 

for carbonates at various resolutions. Their study did not perform network extractions to 

determine other rock parameters, such as coordination number, permeability or features of 

the geometric topography. Bera et al. [66] investigated the presence of nanopores within 

the porous structure of Berea Sandstone using focused-ion-beam-SEM. They concluded 

nanopores are present on the order of 2000nm
3
 in a 9.45μm

3
 volume, with good 

connectivity to the bulk pore space [66]. Their study lacked an analysis of the pore 

network and the impact the addition of nanopores had on the overall permeability of the 

rocks.  
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Padhy et al. [64] combined back-scattered electron-SEM, statistical image analysis, 

nuclear magnetic resonance and mercury intrusion porosimetry techniques to statistically 

characterize the structure of Berea Sandstone and synthetic samples at multiple length 

scales. Their study was primarily focused on the validation of the nuclear magnetic 

resonance technique and they concluded that further refinements were required due to 

discrepancies between the simulated networks and the mercury intrusion porosimetry 

results. Their study lacked an alternate means of computing the permeability curves 

through a pore network invasion percolation assessment to resolve the discrepancies 

between the simulated networks and the mercury intrusion porosimetry results.  

Zhu et al. [31] performed a thin-section analysis of Indiana Limestone core samples and 

found pore radii in the range (25-50) µm. While Gharbi et al. [67] and Bijeljic et al. [30] 

determined the mean pore radius of Indiana Limestone to be (10 µm). This indicates the 

technique used to measure the pore radius can influence the measured value.  

While thin-section analysis, SEM and focused-ion-beam-SEM can provide two-

dimensional images of the microstructure, microCT is the only experimental technique 

which can provide high spatial resolution data in three-dimensions. The collected data 

needs to be interpreted and analyzed using pore network models, and can then provide 

detailed information on the pore geometry, and permeability. The literature lacks an 

analysis of Pink Dolomite, while the analysis of Indiana Limestone from the literature can 

provide a set of comparative values.  

2.5 Porosity of Carbonate Rocks 

The porosity of a sample is a measure of the void volume [68]. Porosity is a key 

parameter required to determine the permeability and to predict macroscopic transport 

properties for bulk reservoir modeling [69].  The total porosity (φ) of a rock sample is 

defined as follows:  

  
     

     
                  

where Vpore represents the volume of the pores, and Vbulk represents the total volume of the 

material including the pore space. The φ can be determined directly from a binary image 
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stack of the sample volume, as in microCT. The porosity can also be measured using a 

number of techniques including: helium pycnometry, mercury intrusion, wet weight vs. 

dry weight and imaging techniques [68]. However, helium pycnometry, and wet weight 

vs. dry weight techniques can only access the pores which are connected to the exterior 

edges of the sample [70]. 

2.5.1 Thresholding 

To convert the grayscale images to black-and-white images, a threshold is used to 

separate the porous material into two distinct regions, void and material. For porous 

materials that have a uniform pore size, such as sandstones, or materials with a high-

contrast between the material and the pore space, the division into a binary image is a 

trivial process. Otsu’s method [71] is a commonly applied thresholding technique [20, 30, 

67, 72-74]. In Otsu’s method, the grayscale histogram is iteratively tested in order to 

minimize the spread (also called variance) of the distributions above and below the 

threshold. The grayscale value which minimizes the variance is selected as the threshold. 

However, for materials with non-uniform pore sizes, such as carbonates, determining the 

threshold is not a straightforward process. The conversion of the image into its pore space 

and material is a critical stage [20, 67, 74, 75], since an incorrect segmentation can lead to 

an over- or under-estimation of the pore space.  

2.5.2 Dual Porosity of Carbonates 

Dual porosity refers to a void volume with porous features across multiple length scales. 

For dual porosity rocks such as carbonates it is challenging to capture the full range of the 

pore structure with a single imaging technique due to pore sizes over a broad range 

(nanometres to centimetres) [19-21]. Deriving relationships between the porosity and 

flow based properties for carbonate reservoirs remains an area of active research, due 

mainly to the complexity of carbonate structures because of their dual porosity [21-31]. 

Dual porosity is characterized by both an apparent macroporosity, having features well 

above the spatial resolution of microCT imaging, and microporosity with features near or 

below the microCT resolution. As a result, the estimation of transport properties such as 

permeability and tortuosity, is more challenging since correlations, such as Archie’s Law, 

are no longer applicable [76]. Further, characterizing the dual porosity is in itself a 
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challenge, since the pore sizes range from nanometers [66] to centimeters [77]. A single 

imaging technique cannot visualize pore sizes across disparate length scales, so the use of 

multiple imaging techniques is required [36, 37]. As well, microCT data is required due to 

the three-dimensional representation of the pore space, while SEM data is only on a two-

dimensional plane of the sample.  

Because carbonates exhibit porosity below the resolution of the microCT (defined as  

microporosity) some researchers [32, 33] have used image registration techniques [29] 

(which involves the use of multiple images at various resolutions) to combine high 

resolution data from SEM with the lower resolution microCT data. However, to perform 

image registration large data sets of SEM data are required. To overcome this challenge, 

most recently, Ji et al. [20] proposed a correlation for determining the microporosity 

directly from microCT data.  Ji et al.’s [20] correlation is based on the relationship 

between the grayscale value of a voxel and the attenuation of the X-ray through the 

material. Ji et al. [20] applied dual thresholding to an Indiana Limestone sample to 

determine the volume which was below the resolution of the microCT. Their technique 

worked well for greyscale histogram data exhibiting dual Gaussian peaks. However, it has 

seen limited application to other carbonates. A key gap in the literature on dual porosity 

carbonates is there lacks a systematic thresholding technique applicable broadly to 

microCT and SEM data.  

2.6 Pore Network Modeling for Geologic materials 

Pore network extraction and modeling is used in porous material research to simplify the 

structure of a sample void space into a digital form that can be analyzed to determine 

geometric properties (e.g., pore radius, pore volume, pore coordination number, and pore-

to-pore distance, described in Table 2-2) of the material [25, 72, 74, 79-82]. A pore 

network model consists of pores that represent the sample voids and throats connecting 

them [3]. Pore network extraction techniques can be used to characterize the 

microstructure of volumetric imaging data and identify detailed geometric information 

regarding the pore space. These geometric parameters can then be input directly into pore 

scale transport studies [24, 29, 30, 57, 67, 83] or as averaged grid-based values for 

reservoir scale modeling [10, 84, 85].  
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Until recently, pore network models of rock materials relied on thin-sectioning and 

laborious processing of hundreds of individual slices of information [12]. However, 

microCT allows for rapid processing of the internal three-dimensional structure of the 

porous material, down to voxel resolutions of 1 µm for small samples [20, 21, 24, 29]. A 

voxel is a three-dimensional pixel, while the pixel is the smallest unit of a two-

dimensional image. 

Pore network models have been used extensively in geology and petrology to investigate 

the pore morphology of rocks, and to study invasion patterns and transport parameters on 

imaged pore structure [75, 79, 86-90]. The determination of pore locations is achieved 

through a few common methods: grain-based and voxel-based. In the grain-based 

approach, material centers are identified as grain locations, which then establish adjacent 

pore locations. From this skeleton, the connectivity and the pore morphology can be 

determined [6, 25, 91, 92]. With the voxel-based technique, the maximum inscribed 

radius within the void space is used to determine the radius of associated pores [6, 75, 88, 

93, 94]. Hence, the pore radius provides an underestimate of the pore volume. The throat 

radius is the inscribed sphere at the constriction between two pores. The pore 

coordination number is a representation of the connectivity of the pores to each another. 

A higher pore coordination number implies a better connected network of pores. The 

pore-to-pore distance is the shortest distance between two pores. The pore volume, pore 

radius, throat radius, pore coordination, and pore-to-pore distance are shown graphically 

in Table 2-2. A full review of the work conducted in pore network modeling for geologic 

porous media can be found at [80, 95]. 

Although the grain and voxel methods are effective in producing a pore network model of 

the material, considerable improvements have been made in reducing computation time 

through the use of the Watershed algorithm [96]. This algorithm segments the void 

structure based on how it would be invaded by water [97]. An advantage is that this 

technique requires fewer computations than grain- or voxel-based approaches. As a result, 

a larger sample volume can be studied [72].   

Gharbi et al. [67] and Bijeljic et al. [30] used pore network modeling to investigate four 

sandstones and two carbonates, one of which was Indiana Limestone. Their algorithm 
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however, had a geometric constraint, which limits the number of possible connections to a 

given pore. This can lead to unphysical representations of the pore space since in the 

porous material there are no arbitrary limits on the interconnections between void spaces. 

Hinebaugh et al. [98] developed a novel pore network extraction technique that built on 

existing studies of geologic materials [99-102] without a geometric constraint. However, 

Hinebaugh et al.’s [98] pore network model had not been applied to Indiana Limestone 

and Pink Dolomite.  

2.7 Invasion Percolation 

Invasion percolation simulations have been used extensively to determine the saturation 

and capillary pressure profiles of geologic materials [79, 103-106]. Invasion percolation 

simulations are performed on an extracted pore network to determine the capillary 

pressure vs. saturation curves of the investigated geologic material. Invasion percolation 

simulations are performed using the Washburn equation in the capillary flow regime 

[107]. 

The Washburn equation describes the pressure required to breakthrough a narrow 

cylindrical passage, such as the throats of the pore network model. In Equation 3.2, the 

capillary pressure is written as follows: 

   
  

 
                

where Pc (Pascals) is the capillary pressure required for a liquid with surface tension γ 

(Newtons per meter) to penetrate a cylindrical tube with radius r (m), and the contact 

angle between the material and the invading liquid is given by α (radians). In invasion 

percolation simulations the pore network is invaded with the operating fluid. The pore 

space is continuously filled until saturation occurs. At each iteration, a given pore is filled 

as long as the pressure is sufficiently large to enter.  

2.8 Experimental Techniques to Determine Mineral Composition 

Knowledge of the mineral composition is required for performing invasion percolation 

simulations, as the contact angle between the invading fluid and the solid matrix is 

required [31]. The mineral composition of core samples can be determined through a 
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variety of methods, including X-ray diffraction spectrometry [36], X-ray fluorescence 

[36, 108] and scanning electron microscopy with electron dispersive spectroscopy [109]. 

X-ray diffraction spectrometry and X-ray fluorescence are bulk techniques, whereas SEM 

with electron dispersive spectroscopy can determine the chemical composition at the 

microscale. These techniques are all destructive.  

 

X-ray fluorescence spectrometry is reliant on Bragg’s Law to deduce the overall 

frequency of the chemical composition. It relies on the diffraction of a collimated X-ray 

beam off of a sample. The approach relies on the angle of scattering off a sample due to 

Bragg’s Law  

 𝜆                          

where n is an integer count of the number of incident waves, 𝜆 (meters) is the wavelength 

of the incident ray, d (meters) is the spacing between the atomic lattice, and θ (radians) is 

the angle between the scattered waves and the incident wave.  

X-ray fluorescence spectrometry works on the principle of ionization of elements 

resulting in the emission of electrons at energies correlated to the elemental composition 

in weight percent [110]. The investigated material, in a powdered and pressed sample 

holder is subjected to a collimated X-ray beam that excites the orbital electrons, which are 

subsequently emitted. The emitted waves scatter and are counted by a detector. The 

frequency at which the scattered waves impact the detector, as the sample is passed 

through a 360
o
 rotation, indicates the percentage by weight of the sample’s chemical 

composition. X-ray fluorescence spectrometry provides a detailed elemental mineral 

composition of the bulk sample [110]. 

Scanning electron microscopy uses a high energy electron beam to interact with a 

conductive specimen [111]. The electron beam is decelerated by the specimen and can be 

visualized using secondary electrons emitted from the sample as in back-scattered 

electrons, or using photons, as in electron dispersive spectroscopy. In SEM-electron 

dispersive spectroscopy, specific microscale features of the sample can be analyzed for 

their chemical composition [58]. 
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2.9 Conclusion 

In this chapter, a review of the experimental and numerical techniques to investigate the 

mineral and pore structure of geologic materials was presented. Though the pore structure 

of Indiana Limestone and numerous other rocks have been reported in literature, there is a 

lack of data on Pink Dolomite. A systematic method to quantify the dual porosity of 

carbonates is also absent from literature.                                                 
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2.10 Tables 

 

Table 2-1: Major carbon capture and storage projects globally for post combustion 

capture. The year in parentheses indicates the year the project began operation. Projects  

selected from major deep geologic sequestration sites summarized from [37]. 

 

Project Location 

Company 

Leading 

the 

Project 

Storage 

Type 

Depth 

(m) 

Approximate 

Storage of Carbon 

Dioxide per year 

(Millions of 

Tonnes) 

Sleipner 

(1996) 

North Sea, 

Norway 

Statoil Offshore 

Deep 

Saline 

Formation 

850 1 

Weyburn 

(2000) 

Saskatchewan, 

Canada 

Pan 

Canadian 

Enhance 

Oil 

Recovery 

2000 2.7 

In Salah 

(2004) 

Algeria BP Onshore 

Deep 

Saline 

Formation 

2000 1 

Snøhvit 

(2008) 

Barents Sea, 

Norway 

Statoil Offshore 

Deep 

Saline 

Formation 

2600 0.7 
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Table 2-2: Summary of the pore space characteristics of a pore network model.  
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Chapter 3  
 

Pore Structure Characterization of Indiana Limestone and Pink 

Dolomite from Pore Network Reconstructions   

3  

3.1 Introduction 

Challenges remain in estimating the storage capacity of formations and the long-term 

safety of the injected carbon within the porous rocks [18, 43, 44]. Reservoir scale 

analyses can be conducted to estimate the migration of the carbon dioxide plume within 

the geology [45]; however, these reservoir scale studies require estimates of upscaled 

transport properties for the target formation, which are ultimately governed by effects at 

the pore scale [46, 47]. To determine these pore scale parameters, microscale studies are 

required to identify the detailed rock structure, to understand how carbon dioxide will 

flood the rock and interact with in situ brine, and to determine the eventual stability of 

trapped carbon [48]. This study presented in this chapter contributes a detailed pore scale 

characterization of carbonate rocks. 

Although sandstone reservoirs have been well characterized in the literature [12, 49, 50, 

52] because they contain a large portion of global petroleum reserves [49], studies are 

required for saline aquifers of limestone and dolomite. These rocks have been identified 

as suitable carbon dioxide sequestration targets due to their high porosity and effective 

stratigraphic trapping [16, 42]. In contrast to sandstones, the complex microstructure of 

carbonates [29] requires a more in-depth investigation.  

Bachu [18] has identified the Alberta Basin, a carbonate geological formation, as an ideal 

location for carbon dioxide sequestration for its high porosity formations capped with low 

permeability caprock. Despite this preliminary study of the Alberta Basin, much work 

remains to fully characterize the detailed microstructure and multiphase transport 

parameters of suitable carbonate reservoirs [17]. For this study, physical samples from 

Alberta basin formations could not be obtained due to existing property and licensing 

rights in the region. Instead, model carbonate samples were acquired. Indiana Limestone 
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and Pink Dolomite were chosen to reasonably represent the porosity and permeability 

conditions identified for sequestration in the Alberta basin [10].  

Developing a detailed characterization of limestone and dolomite microstructures is 

necessary for accurate modeling of the complex geochemical processes involved in 

carbon dioxide sequestration in carbonate formations [10, 18]. Limestone and dolomite 

form the main structural components of carbonate saline aquifers. Although the bulk 

properties of many dolomites [55] and limestones [56] are known, a detailed examination 

of the microstructure is necessary to develop a robust methodology to characterize the 

carbonate geology. 

To characterize the microstructure of rocks, a number of experimental and numerical 

techniques have been applied in the literature. These include thin-section analysis [57], 

scanning electron microscopy (SEM) [57, 58], focused ion beam-SEM [59], and mercury 

intrusion porosimetry [12, 21, 60, 61]. These techniques are destructive, so downstream 

measurements are not possible, and results for multiple techniques must be averaged 

across multiple samples. 

In contrast, X-ray micro-computed tomography (microCT), is a non-destructive technique 

for volumetric characterization, which has been used extensively to image porous 

materials in three-dimensions [62, 63, 112]. This facilitates subsequent analyses, such as 

pore network modeling to determine the characteristics of the pore space. Similarly, the 

porosity can be measured directly from a binary image stack of the sample volume [25].  

Pore network extraction and modeling is used in porous material research to simplify the 

structure of a sample void space into a formalism that can be analyzed in various ways 

[25, 72, 74, 79-82]. A pore network model consists of pores that represent the sample’s 

voids and the throats connecting the pores [3]. Pore network extraction techniques can be 

used to characterize the porous structures imaged using microCT to identify detailed 

geometric information regarding the pore space.  

Zhu et al. [31] performed a thin-section analysis of Indiana Limestone core samples and 

found pore radii in the range (25-50) µm. Although Zhu et al. [31] studied Indiana 

Limestone their investigation was at a resolution of ~33 µm due to the minimum 



www.manaraa.com

22 

 

thickness of the thin-section. Gharbi et al. [67] and Bijeljic et al. [30] performed pore 

network modeling on microCT data of four sandstones and two carbonates, including 

Indiana Limestone at a resolution of 7.7 µm per voxel. Although they were able to 

characterize the microstructure of Indiana Limestone, a key gap was that they did not 

examine Pink Dolomite, and that they used a pore network model which had geometrical 

constraints, meaning limits were placed on the number of throats a pore could have. 

Hinebaugh et al. [98] developed a novel pore network extraction technique that built on 

existing studies of geologic materials [99-102] and improved the tessellation process by 

accounting for overlapping pores and including trapped air phases. In contrast to the work 

of Gharbi et al. [67] and Bijeljic et al. [30] the pore network model of Hinebaugh et al. 

[98]  had no geometrical constraint. This leads to a better physical representation of the 

rock pore space since no limit was placed on the number of possible connections to a 

given pore.  

The following geometric properties; porosity, pore size, pore radius, throat radius, pore 

coordination number, and the pore-to-pore distance are required to describe the 

microstructure of the pore space [113]. The porosity is a measure of the void volume of 

the sample, including both the connected and unconnected pores of the sample. The pore 

size distributions are statistical measure of the pores in the sample. The pore radius is the 

radius of the inscribed sphere in the pore network extraction of the pore space. The throat 

radius is the radius of the cylindrical throats which connect pores. The pore coordination 

number represents the connectivity of the pore space. The pore-to-pore distance is the 

shortest distance between two given pore centers. To assess the transport parameters, 

knowledge of the mineral composition is necessary for performing the invasion 

percolation simulations, as the contact angle between the invading fluid and the solid 

matrix is required [31]. 

The two main objectives of the experimental and numerical work discussed in this chapter 

are to first characterize the internal microporous structure and second to begin to assess 

the transport parameters of the model carbonate cores. 
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3.2 Methodology 

The experimental and analytical methods used to determine the microstructure of Indiana 

Limestone and Pink Dolomite are detailed below.  

3.2.1 Selection, Preparation and Mineral Characterization of the Rocks 

Two geological cores of Indiana Limestone and Pink Dolomite were selected as model 

carbonates for the carbon dioxide storage technology analysis. These samples were 

selected based on their relevance as model carbonates representative of the North Alberta 

Basin [10], and consistent with the requirements for a suitable carbon dioxide storage site 

outlined in [2] based on guidelines from the Intergovernmental Panel on Climate Change 

[1], and the European Union’s best practice guidelines for carbon capture and storage 

technology [114].  All rock cores were obtained from Kocurek Industries (Caldwell, TX, 

USA). Their characterization, as provided by the supplier, is summarized in Table 3-1.In 

this study, microCT was selected to image the three-dimensional structure of the samples 

because it provides a digital representation of the volumetric pore space at a high spatial 

resolution. Similarly, the microCT data is ideal for subsequent pore network extraction to 

characterize the microstructure of the rock samples. The characteristics crucial for 

evaluating a given rock’s suitability for carbon dioxide storage are the pore volume, pore 

radius, throat radius, pore coordination number, and the pore-to-pore distance. 

To choose the sample size, it was essential to select a volume such that the pore space 

investigated was representative of the rock structure at a larger scale. The representative 

elementary volume (REV) is the minimum sample volume required to obtain an accurate 

measurement of a desired property (porosity, permeability or tortuosity). Selection of the 

sample REV depends on the property being measured and the porous material 

investigated – for sandstones, measurement of permeability generally requires an REV at 

least twice as large as that for determining the porosity [115].  

A full scale assessment of the REV of carbonate dolostones for porosity was conducted 

by De Boever et al. [25] on microCT data with a spatial resolution of 1.5 µm
3
/voxel. They 

determined the REV to be 0.07 mm
3
. In contrast, Mostaghimi et al. [115] showed that the 

REV was larger than their carbonate sample sizes of 4 mm
3
 for both permeability and 
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porosity when the spatial resolution of their microCT data was 5 µm
3
/voxel, due to pore 

scale heterogeneity. This indicates that a lower spatial resolution requires a larger sample 

REV and carbonates have a large REV for permeability. For these reasons, the datasets 

collected in this work were chosen to be the largest possible size for spatial resolutions 

below 11 µm
3
/voxel. This enabled detection of the macropores within the sample, and 

will allow for future investigations into the permeability and tortuosity of the pore space. 

The sample sizes were selected to be at minimum 66.5 mm
3
 for the Indiana Limestone 

samples, and 53.5 mm
3
 for the Pink Dolomite samples.  

The two cores were sectioned into five cylindrical samples 1cm x 0.6 () cm (approx.) 

using a dremel tool prior to scanning. Cutting with a dremel can be destructive to the 

edges of the samples; however, the edges were cropped during image processing. Four 

samples of Indiana Limestone and four samples of Pink Dolomite were studied using 

microCT. One sample of Indiana Limestone and one sample of Pink Dolomite were 

analyzed using SEM, the results and discussion can be found in Chapter 4.  

X-ray fluorescence was chosen to determine the mineral composition because it provides 

the relative amount of each chemical component of the bulk mineral composition [36, 

108]. X-ray fluorescence spectroscopy was conducted with a Philips PW2404 (Philips 

Corporation, Amsterdam, The Netherlands) in the Geology Laboratory, Department of 

Earth Sciences (University of Toronto). The samples were individually ground to a fine 

powder using a ceramic mortar and pestle, then pelletized and placed in the sample 

holder.  

3.2.2 MicroCT Imaging and Processing Techniques  

The microCT imaging was performed using a General Electric Phoenix v|tome|x s 

machine (General Electric, Connecticut, United States of America) in the Geomechanics 

Laboratory (Civil Engineering, University of Toronto).  The microCT machine was 

equipped with a 180kV / 15 W high-power nano-focus X-ray tube housed within a 

protective radiation safety cabinet. A voxel is the smallest unit of a three-dimensional 

image, while the pixel is the smallest unit of a two-dimensional image. Voxel resolutions 

between 7.5-11.1 μm
3
/voxel were used.  
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The sample was oriented in the positive x, y, z position and firmly affixed to the rotating 

table using hot-melt glue. To minimize beam hardening and ring artefacts, a 5mm thick 

copper filter was used between the X-ray beam source and the sample. Table 3-2 

summarizes the settings, resolutions, and size of each scan.  

The datos|x acquisition software system was used to calibrate the images prior to data 

acquisition. The calibration required a pixel correction mask to minimize hotspots on the 

detector. Once the image data was collected, the datos|x software was used to reconstruct 

the microCT scanned images.  

The microCT data was processed in three main stages: a) cropping, b) filtering, and c) 

binary thresholding. These main processing steps are outlined in two-dimensions in 

Figure 3-1. The microCT image stacks were cropped to remove any voxels that exhibited 

edge effects, such as beam hardening, or material removal from the use of a dremel tool 

to cut the samples. Beam hardening occurs at the limit of the material due to the change in 

density from material to vacuum [62, 63, 112]. The x,y,z dimensions of the cropped 

samples are summarized in Table 3-2. The cropped image stacks were filtered using a 

hybrid three-dimensional median filter to remove residual noise [20, 116].  

The cropped microCT image stacks were filtered using a hybrid three-dimensional 

median filter on a 4
3
 voxel subvolume, the smallest possible subvolume, similar to the 

filtering conducted by Ji et al. [20]. The three-dimensional median filter with centre-

pointing was used to reduce voxel noise and enhance the pore edges [48, 49]. In a median 

filter with centre-pointing, the median gray value of the subvolume is applied to the 

centre voxel of each subvolume instead of being applied to the full subvolume. Filtering 

was performed using the hybrid three-dimensional median filter plugin [117] for 

Fiji/ImageJ [118]. 

The three-dimensional median filter reduced the pore surface roughness while 

maintaining the pore volume and removed random noise [116]. The noise within the 

microCT data can originate from defects in the detector and impurities within the copper 

filter [119]. In this study, three-dimensional median filtering was required because when 

the Indiana Limestone samples were extracted without filtering, the pore space contained 

many single-voxel pores and low connectivity, which were unphysical. As well, the pore 
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network of unfiltered Pink Dolomite samples could not be extracted in a feasible 

timeframe. Following three-dimensional median filtering, the cropped and filtered 

microCT image stacks were converted to binary image stacks. 

To determine the pore space from the three-dimensional greyscale images, they must be 

converted to black-and-white images. Otsu’s method [71] was applied to the entire three-

dimensional image stack to separate the void and material space into two distinct regions. 

Otsu’s method [71] determines a single threshold value (black and white cutoff) based on 

a minimization of the variance between the greyscale value of the voxels above and 

below the evaluated threshold. The grayscale threshold is recursively searched from the 

histogram values by minimizing the spread (also called variance) of the distributions 

above and below the threshold. Otsu’s method [71] was selected as the thresholding 

algorithm because it provided a threshold based directly from the greyscale histogram of 

the microCT image data. As well, Otsu’s method thresholds three dimensional microCT 

image data. The conversion of the image into its pore space and material is a critical stage 

[20, 67, 74, 75], since an incorrect segmentation can lead to over- or under-estimation of 

the pore space. Further discussion on selecting an appropriate threshold technique is 

included in Chapter 4.  

3.2.3 Pore Network Extraction and Invasion Percolation 

The segmented microCT data was resolved into a binary representation of the pore and 

material space, which was then used as input to the pore network extraction algorithm. 

Pore network extraction converts the imaged pore space into a simplified geometric 

representation by storing only the locations of spherical pores connected by cylindrical 

throats. The pore network was extracted from the processed image stack using a modified 

watershed algorithm [98].  From the extracted pore network, statistical parameters (pore 

size, pore radius, throat radius, pore coordination number, and pore-to-pore distance) 

describing the geological core samples were determined.  

The pore network extraction was used to determine the pore space, pore size distributions 

and pore geometry. The samples presented here contained between 91 and 198 million 

voxels. To determine the saturation-capillary pressure relationship of the core samples 

studied, invasion percolation simulations were required. Invasion percolation simulations 
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were performed on each extracted network using modeling software developed by 

Hinebaugh et al. [98] to determine the breakthrough saturation and capillary pressure vs. 

volume saturation curves.  

3.3 Results and Discussion 

Pore network modeling was conducted on microCT data of Indiana Limestone and Pink 

Dolomite to determine their microstructure and assess their suitability as target formations 

for carbon dioxide sequestration. A high-throughput method for extracting the pore space 

of Indiana Limestone and Pink Dolomite from reconstructed three-dimensional images 

was established. The pore space provides input geometries for microscale flow studies of 

core scale properties and input parameters for reservoir scale investigations.  

The following results include the mineral compositions of the carbonates, the pore scale 

geometric properties, and their comparison to literature values [30, 31, 67]. These results 

provide a dataset of geometric parameters for use in future upscaling simulation studies.  

The bulk mineral composition of Indiana Limestone and Pink Dolomite were determined 

using X-ray fluorescence spectroscopy as 98.6% and 99.4% calcite (CaCO3) by weight 

percent, respectively. The mineral composition of the Indiana Limestone matched that 

reported in the Indiana Limestone Handbook for bulk mineral composition [56]. The 

mineral composition of Pink Dolomite was not reported in literature. Table 3-3 shows the 

complete chemical composition of the rocks, as found using X-ray fluorescence 

spectroscopy. Since both rocks were primarily calcite (Table 3-3), a single contact angle 

could be used in the invasion percolation studies [57].  

The pore geometry of Indiana Limestone and Pink Dolomite were analyzed. The 

statistical distributions that were determined include the mean pore volume radius, mean 

pore radius, mean throat radius, the pore coordination number, and the pore-to-pore 

distance, and each will be compared and discussed below. In all cases, the geometric 

properties reported are the mean of all the samples, and the associated standard deviation.  

Figure 3-2 shows sample slices of the microCT imaging for (a) Indiana Limestone and (b) 

Pink Dolomite which were extracted to pore network models to determine the geometrical 

parameters of the samples.  
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3.3.1 Porosity 

The porosity for the Indiana Limestone samples was determined to be (12±2) %. The 

measured porosity (12±2) % is lower than the sample provider’s reported porosity of 

19%. This was likely due to the presence of micropores below the resolution of the 

microCT. Microporosity is discussed in Chapter 4. Since the porosity of the investigated 

Indiana Limestone samples matched that reported by other researchers [30, 67], this 

showed the image processing and segmentation technique employed in this study was 

able to capture the macroporosity of Indiana Limestone samples.  

The porosity of the Pink Dolomite samples was determined to be (26±9) %. The porosity 

has a large standard deviation compared to the Indiana Limestone samples, which was 

due to pore and material features present in two of the Pink Dolomite samples (Figure 

3-3 b and c). In (b), a large pore (circle), also called a vug, resulted in a higher porosity 

and in (c), a region with high material fraction (box) led to a lower porosity. If the second 

and the third samples are not included, the mean porosity of the Pink Dolomite samples is 

(27±2) %. The Pink Dolomite samples exhibited much less heterogeneity of the pore 

space compared to Indiana Limestone, as shown in the SEM images in Figure 3-2 (c) and 

(d). A higher porosity signifies a larger void volume, and therefore a larger amount of 

carbon dioxide that can be stored in a given volume of rock.  

In the following sections, the statistical distributions describing the pore geometry are 

presented. These include the pore size, pore radius, throat radius, pore coordination 

number and pore-to-pore distance. The Indiana Limestone pore space statistics were 

validated against literature values, and are found in Table 3-4. The pore size distributions 

were fit to lognormal distributions to demonstrate that the geometric properties discussed 

can be used as inputs to micro flow simulations, which require descriptions of the bulk 

pore space.  

3.3.2 Pore Size  

The pore size distributions for the Indiana Limestone and Pink Dolomite extractions are 

shown in Figure 3-4. Knowledge of the pore size distributions is important when 

modeling or determining the permeability and overall capacity of the core samples [29]. 

The Indiana Limestone samples have a larger variance, while the pore sizes for Pink 
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Dolomite are more concentrated near the mean. Figure 3-4 shows representative 

distributions for both rock types. The distributions for the other samples were similar.  

Indiana Limestone samples had a mean pore size of (20±3)x10
3 

µm
3
. The Pink Dolomite 

samples had a mean pore volume of (7.3±0.2)x10
3 

µm
3
. The Indiana Limestone samples 

were similar to one another, represented by a standard deviation of 3%. Representative 

lognormal fits to the pore size distributions are shown in Figure 3-5, along with the mean 

and variance that describe the distributions. The variance of a lognormal fit is a measure 

of how the values scatter around the mean. A larger variance indicates the values 

scattered more around the mean, and the mean is therefore less representative of the 

overall sample set. The fits were determined using DFitTool in Matlab. The variance of 

the Pink Dolomite lognormal fit was 70% lower than that of the Indiana Limestone, 

which indicates the Pink Dolomite samples were more homogeneous in their pore sizes 

than the Indiana Limestone samples. In general, a larger mean pore size can indicate a 

higher permeability and a preferred material for carbon dioxide injection dependent on 

the overall connectivity of the pores. 

3.3.3 Pore Radius  

Representative pore radius distributions of the samples, as shown in Figure 3-6, were 

determined using the pore network extraction algorithm [98].  For both rock types, pore 

radii are in the range of 10-100 µm. Only one sample of each rock type are shown in 

Figure 3-6 for Indiana Limestone and Pink Dolomite as they were representative of the 

four Indiana Limestone and Pink Dolomite samples (Table 3-4). The mean pore radius of 

Indiana Limestone was determined to be (31±2) µm, with the standard deviation 

representing up to a 6.5% deviation from the mean.  

When the pore radii for the Indiana Limestone samples were compared to other studies 

[30, 67], the technique used here found values three times larger. One possible 

explanation for this deviation lies in the definition of a pore used by those authors. In the 

work of [30, 67], a pore is defined as the maximum circle inscribed within a triangle, and 

a throat as the connection between the pores [103]. Their definition of a pore led to a 

higher number of throats than pores due to an inverse correlation between the pores and 

throats, whereas the pore network model employed here, after the development by 



www.manaraa.com

30 

 

Hinebaugh et al. [98], led to a higher number of pores than throats. Zhu et al. [31] 

performed an analysis of Indiana Limestone and found pore radii in the range (25-50) µm, 

which compares well with the results from this analysis, rpore = (31±2)µm. The agreement 

between the thin-section analysis method [31] and the pore network extraction used in 

this study demonstrates that the pore network method can capture physical rock pore 

spaces.  

The mean pore radius of the Pink Dolomite pore space was determined to be 

rpore = (21±1) µm. The standard deviation represented 5% of the total mean radius, which 

demonstrates little variability within the Pink Dolomite samples. Similar to the pore 

volume distribution, the standard deviation of the mean pore radius was larger for the 

Indiana Limestone samples than for the Pink Dolomite samples. A larger mean pore 

radius indicates a higher permeability, which is preferred for materials that will be 

injected with carbon dioxide. The pores that had a radius of a single voxel for both 

Indiana Limestone and Pink Dolomite were exclusively unconnected and represented 

between (30-50) % of all pores. This was due to the lower spatial resolution of the 

microCT data, whereby pores with radii less than a single voxel length could not be 

resolved.    

The pore radii distributions for Indiana Limestone are comparable to literature values 

[31]. The Pink Dolomite pore radii distributions are the first reports of this rock, to the 

author’s knowledge. For both rock types, the pore radii distributions determined here can 

be used to develop simulated pore networks comprising a larger volume than those 

investigated in this study.  

3.3.4 Throat Radius  

The mean throat radius of Indiana Limestone was determined to be (22±1) μm. The 

standard deviation associated with the throat radius represented 4.5% of the mean. The 

mean throat radius for Pink Dolomite was (13.6±0.4) μm. The associated standard 

deviation is 3% of the mean throat radius, representing little variation between the Pink 

Dolomite samples compared to the Indiana Limestone samples. However, it must be 

noted that the reported mean throat radius is approximately two times the resolution of the 

Pink Dolomite samples. Hence, the spatial resolution plays a role in the throat radius that 
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can be resolved from the microCT. In general a larger throat radius indicates a higher 

permeability and a preferred material for carbon dioxide injection. 

3.3.5 Pore Coordination number 

The pore coordination number distributions of Indiana Limestone and Pink Dolomite, 

seen in Figure 3-7, show a consistent range from a coordination number of 1 to 20. The 

mean pore coordination number of Indiana Limestone was determined to be (2.6±0.2), 

which is similar to the literature value of 2.97 in [30, 67]. As discussed in Section 3.3.3, 

the deviation between Gharbi et al. [67], and this study (approximately 14%) is likely due 

to the different pore network models employed here and in those studies. Despite these 

variations, the majority of the pore space geometry statistics are comparable, see Table 3-

5. As well, those authors do not report the full distribution of the coordination number; 

this information provides other researchers an additional level of detail for larger scale 

pore network simulations of limestones and dolomites.  

The Indiana Limestone mean coordination number had a standard deviation of 8%. This 

implies that, in spite of the variability between the pore space geometry, the pore 

coordination is consistent between the samples. For the Pink Dolomite, the mean 

coordination number was determined to be (1.9±0.1), with a 5% standard deviation from 

the mean. The actual range of the coordination for Pink Dolomite, from 1 to 30, was 

larger than Indiana Limestone, which ranged from 1 to 20.   

The Indiana Limestone and Pink Dolomite coordination number distributions, seen in 

Figure 3-7 , were both log-normal distributions. The mean pore coordination number was 

similar for the Pink Dolomite and Indiana Limestone samples, and both exhibited higher 

mean coordination numbers than other carbonates investigated by Gharbi et al. [67]. A 

higher coordination number implies better connectivity of the pore space, and therefore a 

suitable carbonate for injection of carbon dioxide. The coordination number distributions 

can be used to develop simulated networks for use in pore transport modeling studies.  

3.3.6 Pore-to-Pore Distance 

The pore-to-pore distance for Indiana Limestone was (137±8) μm. The standard deviation 

of the mean is small, meaning there was little variation between the samples 
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investigated. For Pink Dolomite, the pore-to-pore distance was (95±7) μm, shorter by 

44% than the Indiana Limestone. However, as seen in the SEM images in Figure 3-2, this 

result is expected by a visual qualitative comparison of the mean pore-to-pore separation. 

A higher pore-to-pore distance implies a lower permeability and a less suitable carbonate 

for carbon dioxide injection due to the larger paths the flow would need to traverse in 

order to fill the nearest pore.  

3.3.7 Invasion Percolation Simulations 

The throat diameter vs. volume saturation curves for sample 1 of Indiana Limestone and 

Pink Dolomite, see Figure 3-8, show the behavior of the pore network over a range of 

throat diameters. Using the Washburn equation (Equation 2.3) the pressure can be 

interchanged with the throat diameter. To interpret Figure 3-8, once the pressure was 

sufficient to enter a given throat diameter, the volume could be saturated to the 

corresponding fraction. Indiana Limestone was slightly less permeable than Pink 

Dolomite, while both had similar breakthrough saturations as a fraction of their respective 

total pore volumes. The breakthrough saturation is determined as the highest saturation 

value on the capillary pressure vs. volume saturation curves. The Indiana Limestone 

curve (in dashed dark grey) has a value of 45%, while the Pink Dolomite curve (in grey) 

has a value of 55% saturation. The mean saturation of Indiana Limestone and Pink 

Dolomite for the samples investigated were (48±4) % and (50±5) %, respectively. This 

indicates that both rocks have a substantial fraction of their pore volume accessible for 

injected carbon dioxide. A higher saturation is generally desirable, as it means that a 

larger proportion of the rock is available, and accessible for injected carbon dioxide.  

3.4 Conclusions 

The objective of this study was to characterize the microstructure of the model limestone 

and dolomite cores, and to begin to assess the transport parameters describing the flow 

through these materials. The statistical distributions of the pore geometry were 

successfully determined for Indiana Limestone and Pink Dolomite, as structural input 

parameters for pore scale and reservoir scale simulations of carbon dioxide injection into 

saline brine-filled porous rock structures to estimate the carbon dioxide storage capacities 

of these formations. The distributions were found using a pore space extraction scheme 
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based on the Watershed algorithm, which has seen limited application in pore network 

modeling of geological structures, in spite of its computational efficiency and ability to 

handle large data sets.  

The key statistical characteristics of the pore space determined for Indiana Limestone and 

Pink Dolomite include: mean pore volume, mean pore radius, mean throat radius, mean 

coordination number, and mean pore-to-pore distance. The statistical pore space 

distributions showed good agreement with literature values for Indiana Limestone. The 

porosity was within 8% of the literature values of Gharbi et al. [67] and Bijeljic et al. 

[30]. The pore radius was within 21% of the mean pore radius determined by Zhu et al. 

[31]. The coordination number was within 14% of the coordination number determined 

by Gharbi et al. [67]. This work presents the first pore scale description of Pink Dolomite, 

as there is little discussion in literature on this carbonate. These statistical distributions 

can be used in future studies as inputs to pore scale and reservoir scale simulations of 

underground fluid transport. 

The groundwork to evaluate the transport parameters of permeability and tortuosity were 

laid through a first assessment of the saturation profiles of Indiana Limestone and Pink 

Dolomite and the extraction of the microstructure properties.  
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3.5 Tables 

 

 

 

Table 3-1: Summary of the core properties obtained from Kocurek Industries  

Geologic 

Material 

Supplier  Formation 

and Location 

Brine 

Permeability 

(milli-Darcy) 

Gas 

Permeability 

(milli-Darcy) 

Porosity 

(%) 

Indiana 

Limestone 

Kocurek 

Inc. 

Bedford, 

Indiana, USA 

70 200 19 

Pink 

Dolomite 

Kocurek 

Inc. 

Edwards 

Plateau, 

Texas, USA 

50 94 29 
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Table 3-2: Summary of the sample sizes, voxel resolutions and dimensions 

 
Sample 

Approx. Dimensions (mm)  

Voltage 

(kV) 

Current 

(µA) 

Voxel 

Resolution 

(µm) 

Cylinder, before 

cropping 

(diameter, height) 

Block, after 

cropping 

Indiana 

Limestone 

#1 6, 8.5 4.4 x 3.6 x 7.7 120 90 11.07 

#2 6, 6.5 3.6 x 4.3 x 5.0 135 60 8.3 

#3 6, 9.0 3.3 x 3.0 x 6.6 135 60 8.3 

#4 6, 8.5 3.8 x 3.9 x 5.8 135 60 8.3 

Pink 

Dolomite 

#1 6, 8.5 4.5 x 3.7 x 6.0 120 60 8.3 

#2 6, 8.0 4.2 x 3.8 x 5.3 120 60 7.5 

#3 6, 9.0 3.7 x 3.5 x 6.3 120 60 7.5 

#4 6,7.0 3.4 x 3.5 x 4.5 120 60 7.5 
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Table 3-3: X-ray fluorescence results for Indiana Limestone and Pink Dolomite. 

Indiana Limestone Pink Dolomite 

Chemical 

Compound 

Atomic 

Weight (%) 
Chemical 

Compound 
Atomic 

Weight (%) 

CaCO3 98.577 CaCO3 99.391 

MgO 0.560 K2O 0.140 

SiO2 0.352 MgO 0.136 

FeO 0.143 Cl 0.104 

Al2O3 0.117 SiO2 0.091 

K2O 0.077 FeO 0.070 

Cl 0.064 Al2O3 0.034 

S 0.048 Sr 0.016 

Na2O 0.031 S 0.012 

Sr 0.021 P2O5 0.007 

P2O5 0.010 — — 
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Table 3-4: Pore structure parameters determined for Indiana Limestone and Pink 

Dolomite 

Pore Structure Characterization 
Indiana Limestone Pink Dolomite 

Porosity (%) (12±2) (26±9) 

Mean Pore Size (μm
3
) (20±3)x10

3
 (7.3±0.2)x10

3
 

Mean Pore radius (μm) (31±2) (21±2) 

Mean Throat radius (μm) (22±1) (13.6±0.4) 

Mean Pore Coordination number (2.6±0.2) (1.9±0.1) 

Mean Pore-to-Pore Distance (μm)  (137±8) (95±7) 
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Table 3-5: Statistical measures of the pore space of Indiana Limestone compared to the 

measures determined by Gharbi et al. [67] and Bijeljic et al. [30] 

Statistical Measure 

Indiana 

Limestone 

Indiana 

Limestone,  

Gharbi et al. 

[67]  

Indiana 

Limestone, 

Bijeljic et al. 

[30] 

# of Samples 4 1 1 

Porosity (%) (12±2) 13.05 11 

Number of voxels ~450
3
-530

3
 330

3 
330

3
 

Voxel Resolution (µm) 8.3,11.1 7.7 7.7 

Physical sample volume after 

cropping (mm
3
) 

66.5-123.4 16.41 — 

Mean Pore Size (µm
3
) (20±3)x10

3
 — — 

Mean Pore Radius (µm) (22±1) 10.17 10.17 

Mean Pore Coordination Number (2.6±0.2) 2.97 2.97 

Number of Pores (#Pores) 9615-17960 5653 — 

Number of Throats (#Throats) 5603-11879 8539 — 
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3.6 Figures 

 

 

 

 

Figure 3-1: Schematic for a Pink Dolomite sample on how the rock samples were 

processed, and converted to binary images using a single Otsu threshold. 
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Figure 3-2: MicroCT data cross-section of Indiana Limestone (a); and Pink Dolomite (b) 

at 8.3µm and 7.5µm resolution, respectively. The diameter of the cores in (a) and (b) are 

approximately 6mm. SEM images of (c) Indiana Limestone and (d) Pink Dolomite show 

the microporosity and heterogeneity of the samples. The length bar is applicable to (c) 

and (d) and represents 1 mm. 
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Figure 3-3: Greyscale slices of the microCT image stacks show significant differences 

among the Pink Dolomite samples. Figures (a)-(d) are the Pink Dolomite samples 1-4, 

respectively. In (b) the large pore, also called a vug is circled in white. In Figure (c) the 

solid material region is highlighted with a white rectangle. The length bar is applicable to 

(a) - (d) and represents 1 mm. 
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Figure 3-4: Indiana Limestone (a) and Pink Dolomite (b) distributions of the pore size. 

Grey signifies all pores, and black represents the connected pores only.  
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Figure 3-5: Pore size distributions for (a) Indiana Limestone, and (b) the associated 

lognormal fit to the distributions. Pore size distribution for (c) Pink Dolomite with (d) the 

associated lognormal fit to the distributions. Note that the means and variances reported 

here are for the lognormal distribution.    
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Figure 3-6: Pore radius distributions of the connected pores of the Indiana Limestone (a) 

and Pink Dolomite (b) samples.   
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Figure 3-7: Pore coordination number distributions for the Indiana Limestone (a) and 

Pink Dolomite (b) samples.   
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Figure 3-8: Invasion percolation simulation results for Indiana Limestone (in dashed 

black) and Pink Dolomite (in grey).  
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Chapter 4  
Dual Porosity of Indiana Limestone and Pink Dolomite  

4  

4.1 Introduction 

Carbon dioxide (CO2) sequestration in underground geologic reservoirs is recognized as a 

viable technology, which has the potential of reducing atmospheric greenhouse gas 

emissions [1]. In geologic carbon sequestration, CO2 resulting from fossil fuel–based 

electricity generation or oil sands processing, for example, is injected into a suitable high-

permeability deep geologic formation to fill the rock pore space.  The CO2 is prevented 

from returning to the atmosphere by sealing the formation with a low-permeability cap-

rock. Part of the evaluation process to determine the suitability of potential storage 

reservoirs involves estimating the CO2 storage capacity [114] of the bedrock. This can be 

determined from knowledge of reservoir transport properties, including permeability and 

connectivity [10]. In particular, an accurate measure of the reservoir porosity is required 

to estimate the local transport properties that are used as inputs to reservoir scale 

simulations. 

These transport properties have been well-characterized for conventional oil-bearing 

formations such as sandstone, both from earlier work in the petroleum industry [6, 7] and 

advances in carbon capture and storage [16, 120, 121]. Carbonate rock reservoirs have 

attracted recent attention within the carbon capture and storage industry, due to their 

abundance in the earth’s crust, as potential CO2 storage sites [11, 12]. However, due to 

the spatial heterogeneity inherent in carbonate rock formations, and the associated 

difficulty in obtaining accurate global porosity measurements, the determination of a 

carbonate rock reservoir’s CO2 storage capacity remains a challenge [2].  

Advances in X-ray micro-computed tomography (microCT) have enabled the evaluation 

of the transport properties of sandstones by providing a three-dimensional image of the 

rock’s internal pore space [66, 122, 123]. In addition, microCT imaging has allowed the 

development of suitable upscaling techniques, such as adapted local-global averaging 

[124], which provide macroscale transport properties for reservoir simulation as derived 
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from detailed volumetric core sample images obtained from rock core samples [50, 125, 

126]. Some of the benefits of this technique include the determination of local-core scaled 

flow and geochemical transport parameters, including local porosity, permeability, and 

species transport models directly from microCT data instead of from large-scale field 

measurements [17, 21, 22]. Deriving relationships between porosity and flow-based 

properties for carbonate reservoirs remains an area of active research, due mainly to the 

complexity of carbonate structures because of their dual porosity [21-31]. Dual porosity 

refers to a void volume with porous features across multiple length scales. It is 

characterized by both an apparent macroporosity, having features well above the spatial 

resolution of microCT imaging, and a microporosity with porous features near or below 

the microCT resolution. As a result, the estimation of transport properties such as 

permeability and tortuosity, is more challenging than for single porosity rocks since 

correlations, such as Archie’s Law, are no longer applicable [76]. Further, characterizing 

the dual porosity is in itself a challenge, since the pore sizes range from nanometers [66] 

to centimeters [77]. A single imaging technique cannot visualize pore sizes across 

disparate length scales, so the use of multiple imaging techniques is required [36, 37].  

Experimental techniques used to measure the local pore structure of geological materials 

include thin-sectioning [57], microCT [62, 63, 112], and backscattered electron scanning 

electron microscopy (SEM) [38, 42]. These techniques are introduced subsequently. Thin-

sectioning analysis involves optical microscopy of thin cross-sections of rock samples, 

and the subsequent combination of the individual images into a volumetric representation 

[57]. This technique is limited by the low resolution capabilities of light microscopy and 

by how thin rock core sections can be sliced. Micro-computed tomography is a non-

destructive technique for volumetric characterization of porous materials [62, 63, 112]. 

Because it is non-destructive, measurements performed with microCT can be repeated on 

the same material. Since the samples remain intact, other analyses such as SEM and 

chemical composition can be performed on the same samples analyzed by microCT. The 

three-dimensional volume image provided by microCT is recorded as a series of images, 

called an image stack. Micro-computed tomography can achieve spatial resolutions up to 

1 µm/voxel. A voxel is a three-dimensional pixel, while the pixel is the smallest unit of a 

two-dimensional image. For higher spatial resolutions, scanning electron microscopy can 
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be conducted to achieve spatial resolutions up to 1 nm/pixel [57]. Scanning electron 

microscopy involves the two-dimensional imaging of a cut rock surface using a high-

energy electron beam [58]. This technique can provide a highly accurate determination of 

the local porosity, but it is limited to a two-dimensional plane, and only a limited number 

of images can be obtained, due to the time required to generate a single image.  

For microCT and SEM, the output is a digital image where each voxel (in the case of 

microCT) or pixel (in the case of SEM) is assigned a grayscale value. When the area or 

volume being imaged exhibits features below the resolution, the grayscale value 

represents an average of the relative amounts of void and material across each digitized 

area. This effect presents particular challenges for microCT, due to its lower resolution.  

In spite of this, microCT has been the preferred method for characterizing the pore space, 

since it provides three-dimensional volumetric imaging data of the pore space [62]. 

The accurate determination of local porosity from two- or three-dimensional imaging data 

requires the conversion of the images into solid and void space. This entails the 

segmentation of the grayscale images into binary (black and white) data, which involves 

the determination of a threshold greyscale value. A threshold is defined as the greyscale 

value above which all the pixels or voxels are assumed to be solid material (white), and 

those below are treated as void (black). The technique used to find an appropriate 

threshold value depends on the type of material being segmented and the pore structure of 

that material. For porous materials that have a uniform pore size, such as sandstones, or 

materials with a high-contrast between the material and the pore space, the segmentation 

is a straightforward process. However, for dual porosity rocks such as carbonates it is 

challenging to capture the full range of the pore structure features with a single imaging 

technique [19-21]. Therefore, more advanced thresholding methods are required. 

Thresholding techniques are categorized in the literature as local or global [91, 129]. 

Local thresholding techniques depend on the spatial variation of the greyscale values 

[130]. Global thresholding techniques rely on the greyscale histogram of the entire image, 

and are therefore more suitable for three-dimensional volumes [91]. A review of 

thresholding techniques has been compiled by Sezgin et al. [131].   
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A common global thresholding technique  for sandstones and carbonates is Otsu’s method 

[20, 30, 67, 72-74]. In Otsu’s method, the greyscale value that minimizes the variance 

between the black pixels (void), and white pixels (solid) is designated as the threshold. 

However, Otsu’s method often underestimates the porosity of carbonates with dual 

porosity, such as Indiana Limestone [20]. This is because it does not account for the 

porous features below the spatial resolution of the imaging method. The pores below the 

resolution of the imaging method are defined as micropores, and the associated porosity is 

called microporosity. While the pores above the resolution of the imaging method are 

defined as macropores, and the associated porosity is called macroporosity.  To overcome 

this limitation, Ji et al. [20] , Bauer et al. [29] and Galaup et al. [21] have introduced new 

techniques to quantify the dual porosity of carbonates. Galaup et al. [21] performed 

experimental measurements using SEM on samples intruded with woods metal to 

quantify the microporosity of carbonates and dolomites. Bauer et al. [29] developed a 

dual pore network model to account for the dual porosity of carbonates by segmenting the 

grayscale histogram from microCT data into three regions: solid, microporous and 

macroporous using the intersection of three Gaussian distributions to provide two 

thresholds. Ji et al. [20] improved upon the segmentation in [29] by using Otsu’s method 

directly on the grayscale histogram to determine the two thresholds and divide the 

grayscale histogram into three regions. Ji et al.’s [20] technique removed the fitting of 

three Gaussian distributions to the data, since not all dual porosity grayscale histograms 

exhibit three Gaussian distributions [20]. Although each of these techniques were 

developed and applied, the literature lacks a thorough comparison of available techniques 

as a first step towards developing a systematic methodology for analyzing dual porosity 

materials.  

The objective of this chapter is to provide a comparison of thresholding techniques of 

SEM and microCT data as applied to Indiana Limestone and Pink Dolomite. Although 

SEM can be conducted at high resolution the data lack information on the three-

dimensional pore space of the rocks. The microCT data provides a three-dimensional 

representation of the pore space, which is necessary to perform pore network modeling 

and pore space analyses. 
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4.2 Methods 

In this study, three techniques for measuring the porosity of carbonates was applied to 

SEM and microCT data of Indiana Limestone and Pink Dolomite as a comparison of the 

measured porosities. The first technique assessed was single Otsu’s method [71], the 

second technique was that of Ji et al. [20], the third technique involved the porosity 

determined from thresholding high resolution SEM images. 

In single Otsu’s method [71], the grayscale histogram is divided into two regions, black 

and white separated by a threshold. The single threshold is determined by minimizing the 

spread (also called variance) between the greyscale value of the voxels above and below 

the evaluated threshold. The grayscale threshold is recursively searched in the histogram 

by minimizing the variance of the distributions above and below the threshold. 

In the greyscale histogram of dual porosity materials, two distributions are present which 

tend to be Gaussian [20, 29]. To determine the total porosity, Ji et al. [20] performed a 

series of thresholds on the full three-dimensional bimodal greyscale histogram. The first 

peak in their data represented the mode of the void space (Ivoid) and the second, the solid 

space (Isolid). Then they performed Otsu’s threshold once on the full histogram to 

determine the first threshold Ji1. Then they performed Otsu’s method a second time on the 

histogram above Ji1 to determine the second threshold Ji2. Both Ji1 and Ji2 are located in 

the region between the peaks of the two Gaussian distributions (Ivoid and Isolid), as shown 

in Figure 4-1. Between Ji1 and Ji2, the microporosity (φlocal) was derived using the 

following relation: 

       
        

            
                  

where G is the greyscale value being evaluated, Isolid is the grayscale value of the peak of 

the solid region, and Ivoid is the peak of the void region.  A weighted summation is then 

applied to the greyscale frequencies to determine the contribution of the microporous 

region to the total porosity. 

The two thresholding techniques for microCT data (single Otsu and Ji et al. [20]) were 

then compared to the porosity determined from SEM image data.  
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4.3 Experimental Methodology 

In this section, the carbonate samples investigated are presented, the sample preparation 

and imaging methodologies are described, and the image processing techniques used are 

outlined.  

The geologic materials investigated were Indiana Limestone and Pink Dolomite. Four 

samples of each were studied using microCT. A single sample each of Indiana Limestone 

and Pink Dolomite were randomly selected for analysis with SEM. As this was a 

preliminary comparison of techniques a single sample of each carbonate was chosen to 

perform SEM.  

4.3.1 MicroCT Sample Preparation and Imaging Technique 

The microCT data was processed in two primary stages. First, the microCT image stacks 

were cropped to remove edge effects due to beam hardening and material removal from 

the preparation of the sample by cutting. Beam hardening occurs at the limit of the 

material due to the X-ray beam traveling through an abrupt change in density from 

material to vacuum [62, 63, 112]. Second, the image stack was segmented into binary 

volumetric data using two thresholding techniques: single Otsu, and Ji et al.’s [20] dual 

Otsu threshold. Each technique was compared for its measured porosity.   

4.3.2 SEM Sample Preparation and Image Processing Technique 

The rock samples were analyzed using a JEOL JSM6610-Lv Scanning Electron 

Microscope (JEOL Ltd., Tokyo, Japan). The machine was equipped with an Oxford solid 

state energy dispersive system with an ultra-thin window and was operated at the Geology 

Department of the University of Toronto. The samples were epoxy-impregnated prior to 

polishing. Polishing of the sample was conducted with a fine grain diamond polisher. 

Then, the polished sample was sputter-coated with a 200 nm layer of gold in preparation 

for SEM imaging. The gold layer provided a conductive layer for the electron beam 

during imaging [132]. 
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The recorded SEM greyscale images were then cropped to remove blurring effects (from 

the refraction of the electron beam through the lens) at the edges. The cropped images 

were then converted to binary images using each of twelve global thresholding techniques 

within Fiji image processing software [118]. The techniques which were determined of 

these twelve to be the most relevant were selected based on an evaluation of thresholding 

methods by Sezgin et al. [133]. For Indiana Limestone, the top four ranked global 

thresholding methods by Sezgin et al. [133] applicable to a single peak histogram were 

used to determine the mean total porosity. These were: Minimum Error [134], Maximum 

Entropy [135], Renyi Entropy [136], and Yen [137]. For Pink Dolomite, the two 

thresholding techniques which were applicable to bimodal histograms were used to 

determine the mean total porosity. These were: Intermodes [138] and Minimum [138]. 

The total porosity, including the microporosity, was then used as a comparison to the 

porosity determined using the single Otsu and Ji et al.’s [20] dual Otsu threshold 

technique.    

4.4 Results and Discussion 

In this section, the results of the thresholding procedures performed on the microCT data, 

shown in Figure 4-3, are first presented for Indiana Limestone and then compared to the 

total porosity observed in the SEM images. The SEM images are shown in Figure 4-4, 

where the very high resolution SEM images show that the microporosities of both the 

Indiana Limestone and the Pink Dolomite were below the resolution of the microCT data. 

Second, the results are presented and discussed for Pink Dolomite. Finally, a comparison 

between the results of Indiana Limestone and Pink Dolomite is presented.  

4.4.1 Indiana Limestone  

The four Indiana Limestone samples and their microCT grayscale histograms were 

analyzed to determine the total porosity, including the microporosity, using the two 

binary thresholding techniques: single Otsu, and Ji et al. [20]’s dual Otsu. A 

representative greyscale histogram showing the various threshold locations is shown in 

Figure 4-1 (a). The single Otsu threshold determined the total porosity to be (13±1) %, 

while for Ji et al.’s [20] dual Otsu thresholding technique, it was determined to be 

(14±5) %. The results of the microCT methods were then compared to the porosity 
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determined using high spatial resolution (1.5 μm/pixel) SEM images. The SEM images 

serve as a high resolution measure of the porosity. To obtain a measure of the total 

porosity, however, the greyscale SEM images must be thresholded. There is significant 

variation in porosity between the various thresholding techniques, as seen in Figure 4-5. 

The top four ranked techniques by Sezgin et al. [131] were used to determine the mean 

threshold value and porosity and were applied to the greyscale histogram (Figure 4-6 (a)). 

The greyscale histogram of Indiana Limestone shows a value of 150,000 counts 

(equivalent to 4% of all pixels) at zero but this is due to internal contrast and brightness 

settings within the SEM device. To ensure the thresholds were not skewed by this artifact, 

the black pixels were not included in the thresholding algorithm since they are known to 

represent void. Using the four techniques (highlighted in grey in Figure 4-5), the mean 

porosity of Indiana Limestone was determined to be (23±4) %.  

The porosity determined using single Otsu and Ji et al.’s [20]  dual Otsu thresholding 

method were similar, while the porosity measured using SEM was significantly higher. A 

potential reason for the variance between the three porosities could be due to the spatial 

resolution of the microCT, which was lower than the SEM spatial resolution. A lower 

spatial resolution implies a larger volume is averaged per voxel. Hence, a higher spatial 

resolution more closely approaches a linear correlation between the grayscale value and 

the microporosity of the imaged region.   

4.4.2 Pink Dolomite  

The Pink Dolomite microCT samples were assessed using the two thresholding 

techniques (single Otsu threshold, and Ji et al.’s [20] dual Otsu threshold; Figure 4-1b). 

The single Otsu threshold resulted in a porosity of (30±2) %. Using the Ji et al.’s [20] 

dual Otsu threshold technique, the porosity was determined to be (27±2) %.  

The microCT histogram for Pink Dolomite is a gradual transition of greyscale values 

(Figure 4-1b). Compared to the microCT histogram of Indiana Limestone (Figure 4-1a) 

the Pink Dolomite microCT histogram has a smaller relative peak than Indiana 

Limestone, and only has a shoulder in the histogram at a lower grayscale value whereas 

the Indiana Limestone microCT data has two distinct peaks. The pore structure of Pink 

Dolomite is distinct from Indiana Limestone since there are more small pores, compared 
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to a broad range of pore volumes. The different grayscale histograms could indicate the 

microporosity of the Pink Dolomite is too far below the spatial resolution of the microCT. 

The Ji et al.’s [20] dual Otsu threshold technique evaluated the total porosity of Pink 

Dolomite as (27±2) %, shown in Figure 4-1b for a representative sample. The local 

microporosity in the region between Ji1 and Ji2 (shown in Figure 4-2), demonstrates a 

similar range in fraction of the total volume for the microporous region between Indiana 

Limestone (0.5-1.0) % and Pink Dolomite (0.7-1.2) %. However, the range in local 

microporosity is higher for the Pink Dolomite sample at (25-45) % than the Indiana 

Limestone sample at (17-35) %. This indicated that the microporosity was a larger 

fraction of the void space for Pink Dolomite compared to Indiana Limestone. A summary 

of the evaluated porosities using the three techniques is provided in Table 4-1.  

To binarize the Pink Dolomite SEM, only two thresholding techniques available in Fiji 

image processing software [118] are applicable, due to the bimodal nature of the 

histogram. These two techniques were: Intermodes [138] and Minimum [138] (shown in 

grey in Figure 4-7). The mean porosity of these two values was (34±3) %. This 

demonstrates that for Pink Dolomite, single Otsu’s method provided a similar measure of 

the total porosity when compared to the total porosity measured using SEM. Ji et al.’s 

[20] dual Otsu thresholding technique was lower than that measured using SEM. This 

indicates that even between carbonates the most appropriate thresholding technique varies 

between Indiana Limestone and Pink Dolomite.  

The porosity measured from high resolution SEM images can be affected by the 

following four sources of error. First, in regions of high topographical changes, for 

example, at the edge of a deep pore, the scattering of the electrons can lead to regions 

which appear white (solid), causing the histogram to skew. Second, sample preparation 

artifacts, such as grinding scratches, can lead to an over estimation of the porosity. Third, 

contaminants to the surface can obscure the image of the material. Hence, maintaining a 

clean sample, free of fibers or dust is required. Fourth, mineral heterogeneity (which was 

not the case for Indiana Limestone and Pink Dolomite) could lead to challenges in the 

segmentation of the greyscale, as each mineral would have a unique greyscale profile. In 

this study, these sources of error were minimized or eliminated by careful sample 

preparation and by investigating rocks which were mono-mineral.  
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Converting the microCT data to binary images is a necessary and crucial step to extract 

the pore space from microCT grayscale image stacks. The assessment performed in this 

study shows that before applying a thresholding technique the spatial resolution, material, 

and imaging technique used must be first considered.  

4.5 Conclusion 

The comparison of the thresholding techniques shows the sensitivity of determined 

thresholds to the imaging technique, spatial resolution, and rock type investigated. For 

Indiana Limestone, the single Otsu threshold and Ji et al.’s [20] dual Otsu threshold 

methods evaluated the porosity as (13±1) % and (14±5) %, respectively. This is 

significantly lower than the porosity determined from a high resolution SEM image, 

which measured the porosity to be (23±4) %. Similarly, for Pink Dolomite, the single 

Otsu threshold and Ji et al.’s [20] dual Otsu threshold methods evaluated the porosity as 

(30±2) % and (27±2) %, respectively. Compared to the porosity determined from a high 

resolution SEM image, evaluated as (34±3) %, the porosity measurement was higher than 

both the single Otsu and Ji et al.’s [20] dual Otsu threshold methods.  

Although this study was preliminary in nature, it shows that a systematic thresholding 

methodology for both SEM and microCT data is required. To produce a more robust 

thresholding methodology, it is proposed that standards be developed to calibrate 

grayscale histograms of SEM and microCT data. These standards should be validated for 

a broad range of resolutions, rock types and pore structure morphologies. 
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4.6 Tables 

 

 

Table 4-1: Comparison of the assessed segmentation techniques for microCT data. A 

summary of the total porosity determined by the segmentation techniques for the Indiana 

Limestone and Pink Dolomite samples is shown. 

Segmentation Technique 

Indiana 

Limestone 

Porosity (%)  

Pink 

Dolomite 

Porosity (%) 

Single Otsu (13±1) (30±2) 

Ji et al.’s [20] Dual Otsu (14±5) (27±2) 

SEM  (23±4) (34±3) 
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4.7 Figures 

 

  

Figure 4-1: Greyscale histogram of the microCT data for Indiana Limestone a) and Pink 

Dolomite b). The lines ‘Ivoid’ and ‘Isolid’ delineate the peak of the void region and solid 

region, respectively. The lines Ji1 and Ji2 are the boundaries of the microporous region as 

determined using Ji et al.’s [20] dual Otsu thresholding technique.   
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Figure 4-2: The local microporosity of the microCT data for the (a) Indiana Limestone 

and (b) Pink Dolomite samples in the microporous region calculated using Ji et al.’s [20] 

dual Otsu thresholding technique. The fraction of the total volume at a given 

microporosity has a similar range (0.5-1.0) % in the Indiana Limestone sample and (0.7-

1.2) % in the Pink Dolomite sample.  
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Figure 4-3: Greyscale image of (a) Indiana Limestone and (b) Pink Dolomite microCT 

samples. The length bar is applicable to (a) and (b) and represents 1 mm. 
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Figure 4-4: Greyscale backscattered scanning electron microscopy images of (a) Indiana 

Limestone and (b) Pink Dolomite. The length bar is applicable to (a) and (b) and 

represents 1 mm. High resolution scanning electron microscopy images of microporous 

regions of (c) Indiana Limestone and (d) Pink Dolomite. The length bar in (c) and (d) 

represents 20 µm.   
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Figure 4-5: The greyscale Indiana Limestone backscattered electron scanning electron 

microscopy (SEM) image was converted to a binary image using the thresholding 

technique named below each image. The porosity of the binary image is in brackets. The 

four thresholding techniques, Renyi Entropy, Yen, Maximum Entropy and Minimum 

Error, highlighted with a grey box were selected for determining the mean porosity of the 

Indiana Limestone sample. Minimum and Intermodes have no recorded porosity because 

the thresholding techniques are for strictly bimodal histograms and the algorithm could 

not converge for the single peak histogram of the Indiana Limestone SEM.  
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Figure 4-6: Greyscale histograms of (a) Indiana Limestone and (b) Pink Dolomite back-

scattered SEM images. The dotted line in both (a) and (b) represents the threshold used to 

binarize the grayscale images. 
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Figure 4-7: The greyscale Pink Dolomite backscattered electron scanning electron 

microscopy image was converted to a binary image using the thresholding technique 

named below each image. The porosity of the binary image is in brackets. The two 

thresholding techniques, Minimum and Intermodes, highlighted with a grey box were 

selected for determining the mean porosity of the Pink Dolomite sample. 
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Chapter 5  

Conclusions & Future Work 

5.1 Conclusions 

In this thesis, Indiana Limestone and Pink Dolomite were investigated as model 

carbonates for their suitability as formations for carbon dioxide storage. A literature 

review on carbon dioxide storage technology, and the role microscale processes play in 

governing the transport of the injected carbon dioxide plume within the geologic 

formation was presented.  The pore structures of the samples were analyzed using pore 

network models extracted from X-ray micro computed tomography (microCT) data. The 

dual porosity of the carbonates was also investigated to determine the sensitivity of the 

thresholding methods to the imaging technique, spatial resolution, and rock type of the 

samples. 

5.1.1 Pore Structure Characterization 

Statistical distributions of pore scale parameters describing the internal pore geometry 

were determined for two model carbonates, Indiana Limestone and Pink Dolomite, which 

are representative of suitable carbon dioxide storage formations. These statistical 

distributions are necessary as structural input parameters for pore scale and reservoir scale 

simulations of carbon dioxide injection into brine-filled porous rock structures to 

determine the carbon dioxide storage capacities of these formations. The key 

characteristics of the pore space that were determined include: mean pore volume, mean 

pore radius, mean throat radius, mean coordination number, and mean pore-to-pore 

distance. These characteristics can be incorporated into large-scale reservoir simulations 

using upscaling techniques, such as local, or global upscaling and including the porosity, 

and the permeability into descriptions of the flow using Darcy’s law.  

The lognormal distributions were found using a pore network extraction algorithm based 

on the Watershed algorithm. Although Pink Dolomite has not been analyzed using pore 

network modeling in the literature, Indiana Limestone was assessed by Gharbi et al. The 

results here matched well with as small as a 9% difference between Gharbi et al.’s 
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computed statistical characteristics and those computed for the Indiana Limestone 

samples.  

From pore space extractions based on microCT imaging and a novel Watershed 

algorithm, Pink Dolomite and Indiana Limestone were characterized. The final 

saturations of both samples were similar, Indiana Limestone reached up to 54 % 

saturation and Pink Dolomite reached 56 % saturation. The preferred rock type for 

injection could not be determined directly from the analyses conducted as the overall 

permeability, heterogeneity of a reservoir and geochemical aspects would also need to be 

considered.   

5.1.2 Mineral Characterization 

The bulk mineral composition of Indiana Limestone and Pink Dolomite were determined 

using X-ray fluorescence as 98.6% and 99.4% calcite (CaCO3) by atomic weight percent, 

respectively.  

5.1.3 Dual Porosity of Carbonates 

The porosity of Indiana Limestone and Pink Dolomite was determined from scanning 

electron microscopy (SEM) and microCT data to provide a comparison of the various 

imaging methods and thresholding techniques. In the analysis conducted here, high-

resolution (0.9-1.5 μm/pixel) SEM images were thresholded using global thresholding 

techniques. The porosity determined was compared to the porosity and microporosity 

determined from lower resolution three-dimensional microCT data using Otsu’s method 

[71] and Ji et al.’s [20] dual Otsu method.    

For Indiana Limestone, the Otsu [71] threshold and Ji et al.’s [20] dual Otsu threshold 

methods evaluated the porosity as (13±1) % and (14±5) %, respectively. This is 

significantly lower than the porosity determined from a high resolution SEM image, 

which measured the porosity to be (23±4) %. Similarly, for Pink Dolomite, the single 

Otsu [71] threshold and Ji et al.’s [20] dual Otsu threshold methods evaluated the porosity 

as (30±2) % and (27±2) %, respectively. Compared to the porosity determined from a 

high resolution SEM image, evaluated as (34±3) %, the porosity was higher than both the 

single Otsu [71] and Ji et al.’s [20] dual Otsu threshold methods. 



www.manaraa.com

67 

 

 The contributions of this work provide a starting point for future work to determine the 

feasibility and potential storage capacity carbonate formations for carbon capture and 

storage technology. 

5.2 Future Work 

Based on the findings in this thesis, there are many areas of carbon capture and storage 

technology that can be further investigated. The pore network model that was used to 

determine the characteristics, pore size distribution, capillary pressure vs. volume 

saturation could be modified to determine the permeability, tortuosity, and specific 

surface area of the geologic material. Furthermore, it could see application to various 

other porous materials.  

The pore network model and invasion percolation code which was used to determine the 

characteristics of the rock is also an area for future work. Extending the analysis to 

include geochemical reactions, such as dissolution and crystallization is a natural next 

step in an exhaustive analysis of a potential formation for injection of carbon dioxide for 

long term storage. Experimental work would need to be completed to validate the models 

of the geochemical reactions, and to accurately represent the complex processes which 

would occur within the formation upon injection of carbon dioxide. 

In future studies, obtaining a higher spatial resolution of the rock structure through the use 

of synchrotron radiation computed tomography would provide a more detailed 

characterization of the pore space. One of the major findings of this thesis was that the 

characteristics of the pore structure are highly dependent on the type of rock that was 

investigated. Future work should include a larger number of samples of different rock 

types to fully characterize a given formation.  

Furthermore, the samples investigated should be obtained from various depths of the 

formation. In this thesis, the samples were procured from a supplier of scientific samples, 

which quarried from surface to a maximum of 60 m deep. For samples more 

representative of carbon dioxide storage sites, depths should be on the order of 800 m or 

greater. This would allow for more representative samples. A larger sample set would 

also allow for consideration of the role depth within the formation plays on porosity, 
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permeability and tortuosity. A comparison can be made between the results presented in 

this thesis for near surface samples, and samples from deeper depths.   
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